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ABSTRACT

A nonparametric estimator of the survival function F is constructed

from time-sequential progressively censored data when F is a Dirichlet

proccss. The estimator is shown to encompass several known estimators

of F including the product-limit estimator and Ferguson's estimator,
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1. INTRODUCTION.

The subject of nonparametric estimation of the survival function

from incomplete or censored observations has received much attention

for more than two decades. We may cite here the celebrated work of

Kaplan and Meier (1958) where a product-limit (PL-) estimator of the

survival curve is obtained from a sample in which each lifetime may be

truncated (fixed censorship) due to limits on observation. In Breslow

and Crowley (1974) the properties of this estimator are considered in

the case of random censorship, where each lifetime has its own censoring

random variable, and the lifetimes and censoring times being each

independent and identically distributed (iid) sequences and also

independent of each other. By utilizing the n6tion of Dirichlet

process priors introduced by Ferguson (1973), Susarla and Van Ryzin

(1976) obtain a nonparametric Bayesian estimator of the survival function

which generalizes the PL-estimator of Kaplan and Meier.

The basic formulation in these works involves consideration of

a random sample of lifetimes X1 ,... ,Xn which may not be completely

observable due to the existence of corresponding censoring variables

YI,9...,Yn. The recorded data for the sample is therefore (ZI,61),...

(Zn,6n) where Zi = mir ' and 6i = 0 or 1 according as

Xi > Yi or Xi f Yi. In seve al longitudinal investigations particularly

those related to clinical trials and iatrogenic follow-up studies the

variables {Zi: I -i < n) are time-ordered: Z(1) f Z(2 ) ... f Z(n) .

The first observation Z(1) is the smallest one followed by the next
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smallest Z(2) and so on until the largest observation Z(n) is recorded

last. In these circumstances cost and time limitations often preclude
prolonged experimentation until the complete set of data {(Zi.,6):

1 < i < n) has been recorded. Furthermore cogent ethical reasons make

it imperative that observation be ceased at the earliest possible stage

if the current accumulated data warrants a clear statistical decision.

Thus a progressively censored scheme may be advocated in which observation

is curtailed at an intermediate stage determined by the cumulative

statistical information. If experimentation is terminated at the knth
n

stage, where kn E {1,...,n} may be a stopping time, then the recorded

data is {(Zi, 6i): 1 < i < k 1, with 6. = 0 or I according has
(i ~n 1

Z(i) is a censoring time or a true lifetime.

In this paper we construct a nonparametric Bayesian estimator,

under squared error loss, for the survival function F from the data

{(Z(i),61): 1 < i kn } when F follows a Dirichlet process prior.

Our estimator thus generalizes, to the progressively censored case, the

estimator of Susarla and Van Ryzin (1976) and encompasses both fixed

and random censorship. It includes, of course, the cases in which the

complete sample is observed (kn = n), an extension of an estimator

of Ferguson (1973) when no censoring is present and the Kaplan-Meier

estimator. It should be noted that in a progressively censored scheme

as described here the observed duration variables {Z(i): 1 < i < kn}
*

and their corresponding identifiers 16i: 1 < i < kn are neither

independent nor identically distributed. The absence of this important

technical facility in the case of progressive censoring (which is available

when the complete data set is observed as in the works cited earlier)

introduces additional complications and subtleties in the analysis of
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progressively censored schemes. For some applications of progressive

censoring see Sen et.al. (1973, 1978, 1981).

The substantive material in this paper in distributed in the

following three sections. Section 2 introduces the basic assumptions,

notation and preliminary notions and provides a brief genesis of our

estimator. Various special cases are also dealt with here. We have

placed the laborious technical manipulations of construction in Section

4, while Section 3 provides a numerical example.

2. PRELIMINARIES.

We are concerned with longitudinal studies in which n specimens

under test are followed from the onset with either the time to decrement

(survival time) X or its competing censoring time Y recorded for

each unit up to the kth response, k E (1,...,n). We suppose the

survival distribution F of X is a Dirichlet process, (for the de-

finition of a Dirichlet process and other terms, see Ferguson (1973)) and given

F, the survival times X1,..., Xn of the sample are independent and

identically distributed (with distribution 1-F). Furthermore we consider

the corresponding censoring times Y1,...,Yn to be independent of

F,X1,... ,Xn, but make no further assumptions on the distribution of the

Yi's themselves.

The objective is to estimate the survival curve

Fit) = P[X > tIF], t > 0 (2.1)

We do not have at our disposal the complete set of data {(Zi.,6i):

I < i < n) where

bow-"1
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Zi = min(Xi,Yi)

6. = 0 or 1 according as X > Y1  or X1 < Yi

but rather the first k order statistics {Z( 1 ),...,Z(k )} from

{Z ,Z n} and their corresponding identifiers {61,.. .60,k where

6I = 1 or 0 according as Z M is a survival time or censoring time.

On the basis of these recorded data {(Z i),): 1 < i < kI we seek

the Bayes estimator F(t) of F(t) under the loss t

£(F,F) = f(F(x) - F(x))dw(x) (2.2)
0

where w is a weight function. Thus Fit) is simply the posterior
*

conditional expectation of F(t) given {(Z(i),6*i): I < i < k}, that

is, we need to evaluate E(F(t)I(Z(i),6i): 1 < i < k), where E denotes

expecation with respect to the Dirichlet process with parameter a.

As argued in Susarla and Van Ryzin (1976) this may be accomplished in

two stages. First relabel the data {(Zi6i): 1 < i < kJ as follows:

let Z(1),...,Z() and Z(+),...,Z(k) denote respectively the ordered

survival times and ordered censoring times recorded among Z(1),...,Z(k).

Now consider a random sample of size i, say n1,...;ni from a Dirichlet

process & with parameter a and then a random sample of size (k-t)

say n ,.k from the conditional process of E given ni, ...,In

Then this conditional process is itself a Dirichlet process with parameter

6, with 0 given by

= .+ I

i I ni~
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Therefore if the conditional process of F given (Z*1),1),...(Z*)1)(1),

is a Dirichlet process with parameter

I
+ I • , (2.3)i=1 Z(i)}

then the construction of our estimator Fit) reduces to the evaluation

of E(F(t)I(Z*i) ,O): £ < i < k) where E now denotes expectation with

respect to the distribution of the Dirichlet process with parameter a

of (2.3). This will be shown to reduce to

k nk
E(F(t){ 11 F(Z* )) - )

i i=t+I (i) FiZ(k))}
F(t) k (2.4)

E( I F(Z Mi)) }{F(Z (k

We shall defer the details of the evaluation of (2.4) to Section 4.

The final form of F(t) can be written as

Ft) B(t)W(t) (2.5)

where

cL(t,-) + N+(t) + (n-k)[t < Z (k)]
B(t) =+ U(R+ ) + n

k (Zj,) + (j)[Z 0 t,6j =O]/A i

W(t) H) + (n-k) + (j) "
j=I k (Z(j),o) + N+(Zij ) )  + (n-k) zt

a(Z k),-) + (nkk)

a t ca (k ),

and [A] denotes the indicator of a set A,
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+ kN (t) = CZ til

+zJ~ ) =
a(IR' (O.O.

and A. = number of censored observations tied at Z(j), and in

an exponent interpreted as unity. It is easy to see that F is left

continuous at censored observations provided the measure a has no

atoms at these points.

Several special cases follow from (2.5).

(a) Suppose the entire data set (i,6 1 < I < n} is available.

Then setting k = n throughout we obtain
/ + }[. < t,6. = 03/A.

n a(z.,o) + N+(Z.) + A. = (2.6)=aN+(t'()_ R J (2.6)

t a(R) + n j=1 a(Zj,-) + N+(Zj)

which is the estimator given by Susarla and Van Ryzin (1976). It is also

shown there that in the limit a(R+) + 0, (2.6) reduces to the Kaplan-

Meier product-limit estimator. If, however, we have only the partial

{(Z(i),6*): 1 < i < ki of a progressively censored sample,

then for t < Z(k), the limit of (2.5) as a(R + 0 is

++ [Z 3j f3.j O/N +(t) + (n-k) k N (Z(j)) + (n-k) + x Z(j) < t,6. =0O/A.n 1 ( ) +V} (2.7)
n j=1 NZ (j)) + (n-k)

Now writing N + (t) + (n-k) = n t +(Z(j)) + (n-k) where
Now ritig n{J:Z j_t} N , Z~)) + (n-k) + x

A. is the multiplicity of Z(j), we find that (2.7) reduces to
, t,6)

k N__+Z(j)) + (n-k)
JIIIN + (Z(j )) + (n-k) + x
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If there are no ties among the uncensored observations this is precisely

the product-limit estimator for t < Z(k). When t > Z(k) the behavior

of F depends on a even in the limit and we cannot recover F since

for any M > 0 one can choose measures ala 2 which agree on (O,M]

but differ on (M,-).

(b) Suppose that in addition to the entire data set {(Zi,6i): 1 < i < n}

being available there is no censoring present. Then setting k = n

and [Z(j) f t,6i = 0] = 0 in the terms following (2.5) we obtain

Fit) = a(t,) + N+(t) (2.9)
a(R+ ) + n

which is the estimator of F(t) proposed by Ferguson (1973). Again

in the limit as a(R+ ) 0 0, (2.9) reduces to

F(t) N(t) = n-1 > t] (2.10)
j=

which is the empirical survival function of X1,..., Xn-

On the other hand if under a progressively censored scheme the

only available data is {(Z(i),6i): 1 < i < k}, then in the absence of

observed censoring times among Z(1),..Z(k) reduces (2.5) to

[Z(k) <t]

0(t,-) + N+(t) + (n-k)[t < Z+(Z + (n-k)
t (I(R+ ) + n Z(Z(k),) (2.11)

We may thus regard (2.11) as the appropriate generalization of the

Ferguson estimator (2.9) to the progressively censored case. Observe

that if t < Z(k), the limit of (2.11) as a(R+ ) -) 0 is again the

empirical survival function (2.10). For t > Z(k) this limit will

depend on a and our previous remark in (a) applies.

* * d



With the restrictions noted here we depict the interrelation among the

various estimators of F(t) diagrammatically as follows:

Our estimator (2.5)

no censoring

SRn Generalized FerqusonSusarla-Van Ryzin estimator '2.11)

estimator 
(2.6)

+ k = n

Kaplan-Meier Ferguson estimator (2.9)

estimator (2.8)

no censoring R+  0

empirical survival function (2.10)

3. A NUMERICAL EXAMPLE

We illustrate here the power of a progressively censored scheme

with the partial data set {(Z)6.): I < i < k) (k < n), to yield

results that are almost in agreement with those obtained when the complete

survival profiles {(Zi.,6): 1 < i < n1 of the sample have been recorded.

The data, taken from Johnson and Elandt-Johnson (1980) (page 179) represents

the survival times in weeks of 81 patients in a melanoma study conducted

through the Central Oncology Group at the University of Wisconsin, Madison.
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The censored survival times are indicated by a + sign.

136, 58, 55+, 181+, 21, 23, 190+, 65, 234
194+, 14, 90, 20, 130, 213+, 215+, 124, 108+
54, 98, 193+, 138, 141, 110, 67+, 50, 26
103, 59, 134+, 147+, 152+, 65, 40, 34, 57
81+, 152+, 125+, 151+, 34, 158+, 27, 148+, 27
132+, 140+, 32, 130+, 38, 85, 129+, 100+, 19

118, 53, 120+, 66, 46, 37, 50+, 114+, 124-1-
26, 102, 93+, 80+, 60, 86+, 21+, 44+, 23
70, 73+, 19, 38, 31, 25, 76+, 13, 16+

We choose for our parameter a the measure generated through

a(t,o) = exp(-et), t > 0 where o > 0 is a real parameter. Since from

(2.1) E(F(t)) =(t,)/(R +) = e-et  (expectation with respect to the

Dirichlet process F), we estimate e by

k * k
ek =  6i/ Zi )

i=l i-i(i=

A reason for this is that when the censoring times {Yi: 1 < i < n}

are iid and the survival times are iid with survival distribution

F(t) exp(-et) then (65 : n > 11 converges in probability to o

nnwhen n-lk n - as n c We have computed F(t) in three cases:

1) k = n = 81; 2) k = 73 and 3) k = 65. The agreement between the

three curves is very good for time points < Z(k).

t 25 44 54 65 76 100 148 190

1) .89779 .74449 .69184 .61091 .59691 .54368 .35401 .31245

2) .89736 .74382 .69107 .61005 .59597 .53361 .35259 .24209

3) .89691 .74317 .69034 .60925 .59512 .53267 .34307 .22655



10

4. PROOFS.

Recall the notation introduced in Section 2. The proof that

the conditional process of F given {(Z(i),1): 1 < i < 0} is a

Dirichlet process with parameter a as specified in (2.3), follows along

exactly the same lines as that of Theorem 4 in Susarla and Van Ryzin

(1976). In order to demonstrate (2.4) write
* ~1*

E(F(t)I(Z *)0): 2 < i < k) = f P[F(t) > a )(Z ,O): i < i < k]da (4.1)
0()

where E denotes (and in the sequel) expectation with respect to the

Dirichlet process with parameter 8. Now for k < i < k,6i = 0, Z M
* * * * *

Xi A Yi = Yi so that Xi > Z(i ) and for k < j < n of course

Xj, Y > z (k) where Z(j) = Xj A Yj. Therefore the integrand in (4.1)

may be written as the ratio 11/12 where

I 1  E(P[F(t) > a, Xi E (Z(i) ,), 9 < i < k, Xj, Yj E (Zk),o), k < j < ni

F(t),F(Z(R)), F(Z*i)), £ < i < k]) (4.2)

and 12 is the resulting expectation obtained by suppressing both F(t) and

"F(t) > a" in (4.2). Since (Y1,.. ,Yn) is independent of (F,X1, ...,Xnd

and including the terms Z(i) = Xi E (0,-) (when 6i = 1), 1 < i < .

we get on simplification

I= E([F(t) > a]. PEX. E (0,-), 1 < i < Z, X E (Zi, ), 2 < i < k,

X E (Z(k),o), k < j < nIF(t),F(Z(k)), F(Z(i)), < i < kj)

PEYj E (Z(k),c), k < j < n] (4.3)



Likewise 12 is obtained from (4.3) by suppressing [F(t) > a) and

F(t). Since {X1 ,.. 9XnI is a random sample from F the inner conditional

probability in (4.3) is almost surely

k ,
Fi =2 .+l ){F(Z(k) - (4.4.)

Finally using (4.4) in 11/12 andcarryingout the integration in (4.1)

we obtain (2.4).

We are now left with the tedious task of carrying out the integrations

in (2.4). Several cases must be considered depending on the position

of the time point t among the observed points Z(1+l),...,Z (k) and

Z(k) (= max{Z(i): I < i < k)).

Suppose ZL+l)."" (m) denote the distinct ordered values

among Z(+l),...,Z (k) with corresponding multiplicities x*+I  M -

Thus

n
1, < i < m; 1 < j < k < n and 2 < m < k, )i = k-t.

The largest recorded observable Z(k) may be either a survival time or
+

a censoring time. Suppose we are in the latter case so that Z(k) = (m).
Consider the case t > Z+. Select the partition of R+ = (0,-)

+ + +

given by the points {Z(): z < i < m + 21 where Z O,Z+
and: Z+ z ((i))=

and Z+ Then defining U. F(Z - F(Z + m(.2) (i i)), ' _< i + 1,
the random vector (U,,...,U m I) has the Dirichlet distribution with

parameter (sx,..., +mI) where

Oi = C(Z+i), (i+i)] (4.1)

and 8 as given in (2.3).

..... - =l,=mmmmIRV,
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Now F(Z(i)) (1 U), 9. < i < m + 1. Therefore the integrand in the
J=z m + i + n-k

numerator of (2.4) - F(t){ H+ (F(Zi))) 1(F(Zm)) can be written

m~i i-1 . n-i m n-k
I (I- u 1 (1E 1 J , (4.2)

i=9+1 J= =

with Xm+l = 1. For the denominator in (2.4) the integrand is the same

as (4.2) except that Am+l = 0.

Now (NS,... gum ) has probability density

m+lr(_ Mi a (3- i~-1

{ - U u (1- E u) , 0 < all u. < 1 and
II r(si) J: :

m+1 ji=k m
0 < Iu < 1,

j=z

where r denotes the Gamma function. The expectation of (4.2) involves

integration over the variables u. ,...,u m . Suppressing all terms not

involving um , the integral over um is

m-i

( =- (-1 m-I (Om+l+Aml )-1du
/0umm (1- X: "  uj'Um) fl dr

r( m)r(Om+l+Am+l) 0 m-I uj) m++m+l-.
- rn(BmM+Am+ 1) (- -.

Now proceeding with the successive integrations over um 1 ,... ,u9  we

finally obtain for the numerator of (2.4)

r(0ir( ( W I .+X.)+(n-k))

n+ i 
i+ l

AM4* 
(4.3)

rIs1) J. -( M + +71 A-i) +-1i+ 1 jx)(-)
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Note that in (4.3) the value of Ai+l is 1. For the denominator of

(2.4) we have the same expression except that Am+l = 0.

Proceeding with cancellations of the common factors in the numerator and

denominator of (2.4) yields our estimator

F 't) m+8IBm1 {Z.= (oi+i)+m+l+(nk) j (4.4)
m 8 1 jj!+1

Recall (4.1) and (2.3). A trite computation shows

Bm+1 = a(t,o) + # (observed lifetimes > t)

(= (Z(m),) + # (observed lifetimes > Z ~m)) (4.5)

m + +
.. (i+Xi)+m+ I = t(Z(j), ) + # (observed lifetimes > 0

1=3

+ # (observed censoring times > Z 0)

S+ N+ (Zlj+ )

a(z + + +(8i+Ai)+Bm+l+8jI = c0(Z0 ),) + N (Z

Substituting in (4.4) and again cancelling out common factors we get

for the product term in (4.4)

(Z~m + )+N + (Z +))+ (n-k)+x m a (Z(J )N(Z ,) n 4.6)
+ ,~)+N~()+)n-k)+)+

(M) , m) (M) ________ )+( k)a(Z) )+NJ+ (ZI )+(n-k) i +1 + + + -) (4.6)
+

W() ( nk j= cz(z MO (Z +

Now Z = Zk) and =0 . Also in the case considered here

N (Z(m)) = 0, N+(t) = 0. Using these in (4.5) and (4.6) yields
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+ aZ +j,co)+N(Zj)n-)x

F(t) = , n.(e + )+n j=.t+ 1 (Z( i ,®)+N+ ( z ~j ) ) + ( ti- k )

•)+(n-k)

which is the form of(2.5) for this case.

All other cases are handled in exactly the same manner and lead

to the general form of F(t) given in (2.5).

: CONCLUDING REMARKS

It can be shown that when the censoring times {Yi: i > 1}

are iid'with continuous right distribution function G on (0,-), the

survival times {X.: i > 1} are iid with continuous right distribution

F, and n- 1kn y E (0,1], then for any T > 0 with F(T)G(T) > l-y,

the process {n2(F(t) - F(t)): t E [O,T} converges weakly to a Gaussian

process. Furthermore under appropriate conditions strong convergence

and consistency can be demonstrated.
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